Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Vet Q ; 43(1): 1-10, 2023 Dec.
Article in English | MEDLINE | ID: covidwho-2166014

ABSTRACT

BACKGROUND: The COVID-19 pandemic, caused by SARS-CoV-2 infection, has become the most devastating zoonotic event in recent times, with negative impacts on both human and animal welfare as well as on the global economy. Although SARS-CoV-2 is considered a human virus, it likely emerged from animals, and it can infect both domestic and wild animals. This constitutes a risk for human and animal health including wildlife with evidence of SARS-CoV-2 horizontal transmission back and forth between humans and wild animals. AIM: Molecular surveillance in different wildlife rehabilitation centers and wildlife associated institutions in Chile, which are critical points of animal-human interaction and wildlife conservation, especially since the aim of wildlife rehabilitation centers is to reintroduce animals to their original habitat. MATERIALS AND METHODS: The survey was conducted in six WRCs and three wildlife associated institutions. A total of 185 samples were obtained from 83 individuals belonging to 15 different species, including vulnerable and endangered species. Each specimen was sampled with two different swabs: one oropharyngeal or nasopharyngeal according to the nostril diameter, and/or a second rectal sample. RNA was extracted from the samples and two different molecular assays were performed: first, a conventional RT-PCR with pan-coronavirus primers and a second SARS-CoV-2 qPCR targeting the N and S genes. RESULTS: All 185 samples were negative for SARS-CoV-2. CLINICAL RELEVANCE: This study constitutes the first report on the surveillance of SARS-CoV-2 from wildlife treated in rehabilitation centers in Chile, and supports the biosafety procedures adopted in those centers.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Animals , SARS-CoV-2/genetics , COVID-19/epidemiology , COVID-19/veterinary , Animals, Wild , Pandemics , COVID-19 Testing/veterinary
2.
Sci Total Environ ; 755(Pt 2): 143352, 2021 Feb 10.
Article in English | MEDLINE | ID: covidwho-915704

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This pathogen has spread rapidly across the world, causing high numbers of deaths and significant social and economic impacts. SARS-CoV-2 is a novel coronavirus with a suggested zoonotic origin with the potential for cross-species transmission among animals. Antarctica can be considered the only continent free of SARS-CoV-2. Therefore, concerns have been expressed regarding the potential human introduction of this virus to the continent through the activities of research or tourism to minimise the effects on human health, and the potential for virus transmission to Antarctic wildlife. We assess the reverse-zoonotic transmission risk to Antarctic wildlife by considering the available information on host susceptibility, dynamics of the infection in humans, and contact interactions between humans and Antarctic wildlife. The environmental conditions in Antarctica seem to be favourable for the virus stability. Indoor spaces such as those at research stations, research vessels or tourist cruise ships could allow for more transmission among humans and depending on their movements between different locations the virus could be spread across the continent. Among Antarctic wildlife previous in silico analyses suggested that cetaceans are at greater risk of infection whereas seals and birds appear to be at a low infection risk. However, caution needed until further research is carried out and consequently, the precautionary principle should be applied. Field researchers handling animals are identified as the human group posing the highest risk of transmission to animals while tourists and other personnel pose a significant risk only when in close proximity (< 5 m) to Antarctic fauna. We highlight measures to reduce the risk as well as identify of knowledge gaps related to this issue.


Subject(s)
COVID-19 , Zoonoses , Animals , Antarctic Regions , Humans , Risk Assessment , SARS-CoV-2 , Zoonoses/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL